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Abstract problems. A few techniques aim to represent the surface
i as the zero-set of an implicit function [15, 20, 25] which

In this paper, we propose a new approach for surface re-can be visualized bye.g., the matching cubes algorithm.
covery from planar sectional contours. The surface is re- A field function is computed in each slice, and the volume
constructed based on the so-called “Equal Importance Cri-data is constructed by spline interpolation of the slice im-
terion,” which suggests that every point in the region con- ages. These approaches also lead to some ambiguities: (1)
tributes equally to the reconstruction process. The prob- field function, (2) artificial surface and (3) efficiency.
lem is then formulated in terms of a partial differeXntial In this paper, we treat the problem in a new way. We
equation, and the solution is efficiently calculated from derive both the isosurface-based and primitive-based rep-
distance transformation. To make the algorithm valid for resentations of the target object so that the reconstructed
different application purposes, both the isosurface and thesyrface is efficient for visualization as well as geometric
primitive representations of the object surface are derived. analysis. This approach is based on representing the prob-
The isosurface is constructed by PDE (Partial Differential |em as a partial differential equation (PDE), which can be
Equation), which can be solved iteratively. The traditional selved iteratively [10]. The isosurface is calculated by lin-
distance interpolating method, which was used by several ear interpolation between the distance transformation of
researchers for surface reconstruction, is an approximateadjacent contours while the primitives are computed from
solution of the PDE. The primitive representations are ap- the Voronoi Diagram (VD). Although the distance interpo-
proximated by Voronoi Diagram transformation of the sur- |ation is used by Jones and Chen [20], it is only an approx-
face space. Isosurfaces have the advantage that subsequejphation of the solution of the PDE. Our solution naturally
geometric analysis of the object can be easily carried out ayoids the correspondence, tiling, and branching problems

while primitive representation is easy to visualize. The in favor of a more robust and efficient solution. The under-
proposed technique allows for surface recovery at any de-lying constraint is based on the Equal Importance Criterion

sired resolution, thus avoiding the inherent problems of (EIC), which suggests that all points contribute equally to
correspondence, tiling, and branching. the shape-reconstruction process. Formally, the constraint
1 Introduction states that surface height decreases linearly along the tra-

Surface reconstruction from a set of planar sectional JECtory of its gradient. As a result, the problem reduces to
contours has been an important problem Fi)n diverse scien-SOIV'ng a PDE. Experimental results on both synthetic data

tific fields. These contours define the intersections of the and real contours are mcludeq. .
object surface with a set of parallel planes along a desired2 Equal Importance Criterion

O.rientation. FOI’ example, CT and MRI teChniques can pro- The proposed reconstruction pr0b|em is undercon-
vide dense serial sectional representation of electron den-strained and ill-posed. To constrain the problem, we im-
sity and water molecule concentration at differentlocations ppse a smoothness measure based on the Equal Importance
along a particular axis. Similarly, in confocal microscopy, Criterion (EIC). Consider a pair of contoufs andC,. Let

cross sections are obtained by focusing the optical systeme, (z,y),i = 1,2 be the binary “object function” such

WOTk 18 10 Utlis6 these erass seclions 1o tecpver the three- 112t Or(.9) = 1 the point (z, ) belongs to the ob-
dimensional surfaces of the object for visualization as well ject (inside),0;(z,y) = 0 if (x,y) is on the curve, and
as geometric analysis. O;(z,y) = —1, otherwise. The surface spaBi¢C;, C2) is
Most of the existing techniques treat the “surface from defined by:

contours” as a primitive reconstruction problem. The prim-

itives are calculated from the adjacent planar contours ac- R(C1,C2) = {(2,y)|O1(z,y)Oa2(z,y) <0} (1)
cording to their geometrical relationship. The approaches

lead to three sources of ambiguities [7, 12, 16, 17, 18, 21, In R(C1, C2), we want to construct a surfaggz, y) such
32, 33]: (1) correspondence, (2) tiling, and (3) branching that f(C;) = 1, f(C2) = 2. Obviously, in the absence

of no constraints, infinitely many solutions exist. To con-
f Advanced Scientiht CompUing Research, Mathematcal, nformation, Surin the problem, we assert ttesery point ine(C, )
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Importance Criterion This constraint is formalized by re-  This (zero value) isosurfaegg =, y, z) = 0 is:
quiring that the change in the gradient-magnitude along
the gradient direction should be zero, that & (f) = e, y) = Dy(x,y) — 2D1(x, y) (5)

V(I v f) - 25 = 0 wherevf indicates the gradient - Ds(x,y) = Di(z,y)

of f, | | the norm and the inner product. The above PDE  which is exactly the surface that we reconstructed in Equa-
implies that along each trajectory of the gradient of the sur- tion (3). Note that Equation (4) is exactly the distance
face, the magnitude of the gradient is a constant. In an-interpolation as used in [20]. Equation (4) is better than
other words, the height decreases linearly from 2 to 1. The Equation (3) because it works for any adjacéntandC-
level curves of the surface are equally distributed along the even if C; = C,. Thus, our algorithm treats any con-
gradient direction. Thus, in view of height, which is our tour and topological changes naturally and cannot fail.
only evidence about swate, all points are equally impor-  From Equation (5), sincé < z < 2 if and only if
tant to us. 7, can be reduced to the “Infinity Laplacian™ D, (z, y)D;(x,y) < 0, thusé(z,y,z) = 0 occurs only
Jo(f) = f3 few + 22 fy foy + f7 fyy = O which has been  in the regionR(C;,C,). Thus, we cannot get an artificial

studied in the literature [1, 2, 3, 14]. Thus, isosurface. o .
The proposed method can be applied iteratively to ev-
J2(f) =0, (z,y) € R(C1,Ca) ery pair of adjacent contour®, Ciy1,i = 1,....,m — 1
st. f(C) =1, f(C)=2. (2) for constructing a series of subsurfacgs These sub-
] surfacessS; : i = 1,...,m — 1, form the whole surface,
3 Isosurface reconstruction namelyS = J; S;. The final output of the algorithm is

In our PDE-based approach, the correspondence, tiling,a three-dimensional data with new slices inserted between
and branching problems have been eliminated and the dis-every(; and(;,;. If we want a resolution o < 1, say

tance betweefl; andC- in thez directionis no longerim- 0.1, along the: direction, reconstruction should include
portant because it only changes the solution by a scale. Webetween each pair of adjacent contodrs- 1 new slices
now develo_p an efficient solution for the above equation. with 7 = %(an integet? is expected).
3.1 Solving the PDE In most cases, the contours are close to one another,
Let's defineD;(z,y),: = 1,2 as theDistance Trans- thus, the smoothness of the union surface is not a prob-
formationof curve C;, whereD;(z, y) has the same sign  lem. When the contours are considerably apart, the surface
of O;(z,y). For each poinp (shown in Figure 1), there =~ May be not smooth at the contour locations. The simplest
should be a gradient trajectorypassing through it such ~ Way to smooth the surface is to convolvér, y, z) with a
that it intersects; andC, atp; andp-, respectively. Since small scale three-dimensional Gaussian filter, which is well
¢, andC, are equal height contours, it is easy to show that Known as equivalent to move every point on the surface
the normal of these two contours and the gradient of sur- long its normal direction at a speed of its mean curvature
face are in the same direction. Thus,L C; at p; and [22]. Those points or regions with high curvatures will be
v L C» atp,. We can approximate the curye passing ~ Smoothed. _
throughp, by drawing two line segmentg)’|, L Cy,pph L 4 Primitive representation

C», to createp pp5,. Let! denote the length of fromp, to A three-dimensional triangle is the basic surface patch
p2. Hence|l =~ |pip| + |php|. The preceding formulation — used in most visualization systems. In this section, we
indicates thatp!p| = —D1(p), |php| = D2(p). Since the show how to approximate the surface defined by Equation
height decreases linearlf,can be approximated by: (3) as an assembly of triangles. The basic idea is to par-

tition R(Cy,C2) into two-dimensional triangles and then
_ 2|pipl + |phpl - Da(z,y) — 2Di(x,y) 3) project them to three-dimensional space.

lpipl+ phpl Dz, y) — Di(z,y) 4.1 Partitioning R(C1,C>)

Partitioning is based on the Voronoi Diagram (VD), one
of the most fundamental data structures in computational
geometry and computer vision [4, 24, 23, 35]. Like most
of the previous works [5, 11, 28, 37], we assume that’,
are polygonal curves. The vertices and segments linking
them are called elements. The VD is a set of points in-
side R(Cq, C2), where each of them has at least two clos-
est elements equidistant to if2(Cy, C2) is divided by its
VD into singly-connected regions, called Voronoi Regions
(VR), according to the nearest-gébor-rule. Each pointin
: . . R(Cy,C2) is associated with the element closest to it, and

Figure 1. Approximation solution of the PDE. all the points in one VR have the same closest element.
See Figure 2. The “net-like” VD consists of line segments
. and parabola that are fitted by polygon curves [19, 34, 36].
3.2 Isosurface construction Thus, each VR becomes a pgbn.

The three-dimensional isosurface repreé- An iterative approach then partitioesch VR into tri-
gg_ntatlon,(/;(x, y,2),1 < z < 2, can now be expressed  gngles. The approach begins by randomly finding two non-

' sequential vertices in one VR so that when linked by a seg-

d(r,y,2) = (2 — DDa(x,y) + (2 — 2)D1(2,y)  (4) ment, the segment is totally inside the VR. This segment

f(z,y)




[ ] RCCy

Figure 2: Voronoi diagram.

(@) (b)

divides the VR into two parts. The algorithm returns for :
each part that is a triangle. Otherwise, this part is set as a

new polygon, and the process continues recursively. G
4.2 Reconstructing three-dimensional triangles

a b.

The computed two-dimensional triangles are then pro- ; !
jected into three-dimensional space, and the cpomeding Cz \J—J—/
z-values of the vertices (of the triangles) are calculated by G 12

Cl a h
a b X

Equation (3). An example is shown in Figure 3.

(© (d)

Figure 4: (;,C, intersect at pointp. (a)Two-
dimensional partition; (b)three-dimensional triangles;
(c)Two-dimensional partition; and (d) three-dimensional
rectangle.

(@) (b)

Figure 3: 3D triangle reconstruction. (a) Two-dimensional
triangles; and (b) three-dimensional patches.

Two specific situations need more careful treatment.
First, if C; and C, intersect at poinp, then the z-value
of p can be either 1 or 2, as shown in Figure 4. In 2D,
letp = (z,y). In 3D, pis denoted by, = (#,y,1)onC,
andp, = (#,y, 2) onCs. Inthis case, an additional triangle
b—p1 —p- besides triangles— b —p, andb—c—p; must be
constructed to preserve the continuity of the surface. Sec-
ond, if C; andC,; share a common segment, as shown in
Figure 4, the z-value of that segment can also be either 1
or2. In 2D, leta = (x1,41), b = (22,¥2). In 3D, @ and

b are denoted byt; = (#1,y1,1),a2 = (21,41,2),b1 = (@ (b)
(x2,y2,1),b2 = (22, y2,2), respectively. Hence, arectan- , . )
glea; — as — by — by must be constructed. Figure 5: Reconstruction results of white matter in cortex

. and region due to edema.
5 Experimental results

The proposed protocol has been tested on real medical
images for both the isosurface representation (Figures 5)
and the primitive representations (Figure 6).



Figure 6: Surface reconstructed from CT data. (a)(c) sur-
face reconstructed from 22 contours; (b)(d) surface recon-
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structed from 16 contours;

6
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Conclusion

Shape from cross-sectional contours is an important

problem in diverse fields of science and has been studied
extensively. However, some of these methods suffer from
correspondence, tiling, and branching problems. The nov- g

elty of the proposed method is in its unique smoothness
measure, the corresponding PDE, and its simple solution

based on distance transformation. We showed that a linear21]

solution provides an adequate representation of the isosur-

face. In the case of primitive representation, VD gives us a
natural segmentation of the surface space and enables us t

construct small surface patches more easily for any shape.

We have tested and verified our approach on data with dif- [23]

ferent degrees of complexities, ranging from simple ge-

ometric features to complex and convoluted structures of
cortex.
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